A hyperbola has a focus at the pole, and vertices with polar co-ordinates $(2, \pi)$ and $(8, \pi)$. /15 PTS SCORE: Find a polar equation of the hyperbola.

Find the logarithmic formula for $\sinh^{-1} x$ by solving $x = \sinh y$ for y using the exponential definition and an algebraic substitution $z = e^{y}$.

$$x = |e^{y} - e^{-y}| = |z - \frac{1}{z}|$$
 $2x = z - \frac{1}{z}$

$$2x = z - \frac{1}{2}$$

$$2xz = z^{2} - 1$$

$$0 = z^{2} - 2xz - 1$$

$$2x = z - \frac{1}{2}$$

$$2xz = z^{2} - 1$$

$$0 = z^{2} - 2xz - 1$$

$$z = 2x \pm \sqrt{4x^{2} + 4}$$

$$y = \ln(x)$$

$$= \sinh^{-1}$$

/20 PTS

SCORE:

Eliminate the parameter to find a rectangular equation corresponding to the parametric equations

$$x = \frac{1+t}{1-t}, \qquad y = \frac{t+2}{t-2}$$

Write your final answer in the form y as a simplified function in terms of x.

$$x(1-t)=1+t$$
 $1 \times -x = 1+t$
 $x-1=t+x = t$

$$x-1=t+xt$$

$$|x-1=t(1+x)|$$

$$|t=\frac{x-1}{1+x}|$$

$$y = \frac{x-1}{1+x} + 2 | . \frac{1+x}{1+x} - 2 | . \frac{1+x}{1+x}$$

$$= \frac{x - 1 + 2 + 2x}{x - 1 - 2 - 2x}$$

$$y = \frac{3x+1}{-x-3} = -\frac{3x+1}{x+3}$$

SCORE: / 35 PTS

On the question about the polar equation $r = 6 + 4\sqrt{3}\sin 3\theta$, they determined correctly that

the symmetry tests $(-r, \pi - \theta)$, $(-r, \theta)$, $(-r, -\theta)$ and $(r, \pi + \theta)$ do **NOT** indicate that the graph is symmetric.

[a] Using their results, along with the tests and shortcuts shown in lecture, test if the graph is symmetric over the pole, the polar axis and/or $\theta = \frac{\pi}{2}$. State your conclusions in the table. NOTE: Run as FEW tests as needed to prove your answers are correct.

[b] Based on the results of part [a], what is the minimum interval of the graph you need to plot (before using reflections to draw the rest of the graph)?

[c] Find all angles <u>algebraically</u> in the minimum interval in part [b] at which the graph goes through the pole.

$$0 = 6 + 4\sqrt{3} \sin 3\Theta$$

$$-\frac{\pi}{2} \le \Theta \le \frac{\pi}{2}$$

$$\sin 3\Theta = -\frac{6}{4\sqrt{3}} = -\frac{6\sqrt{3}}{12} = -\frac{3\pi}{2} \le 3\Theta \le \frac{3\pi}{2}$$

$$3\Theta = -\frac{2\pi}{3}, -\frac{\pi}{3}, \frac{4\pi}{3}, \mathcal{E}$$

$$\Theta = -\frac{2\pi}{9}, -\frac{\pi}{9}, \frac{4\pi}{9}, \mathcal{E}$$

- [a] Find the value of coth x using identities. (You do NOT need to prove the identities you use.)

 NOTE: Your solution must NOT use inverse hyperbolic functions nor their logarithmic formulae.
- $\frac{4}{\cosh^2 x \sinh^2 x = 1}$ $\cosh^2 x 49 = 1$
 - 3 $\cosh^2 x = 50$ 2 $\cosh x = 5\sqrt{2}$ (SINCE $\cosh x > 0$ FOR ALL $x \in \mathbb{R}$) $\coth x = \frac{\cosh x}{\sinh x} = -\frac{5\sqrt{2}}{7}$
- [b] Find the value of $\sinh 2x$ using identities. (You do NOT need to prove the identities you use.)

 NOTE: Your solution must NOT use inverse hyperbolic functions nor their logarithmic formulae.

sinh 2x = 2 siwh x cosh x = 2(-7)(5)[2] = -70[2]

3

As a little boy, Melon Husk lived on Falcon Ave (a straight road). He would ride his Stella tricycle on a path so SCORE: _____ / 10 PTS that his distance from Falcon Ave was always half his distance from a certain lamppost on the sidewalk. What was the shape of the path on which Melon rode his tricycle? Draw a diagram and write algebraic equations involving distances to justify your answer.

Q FAL	CON AVE ME	× -
2X Maon	e= MQ	= - = 2 >
X & LAMPPOST	(4)	HYPERBOLA A
	(A)	